1,864 research outputs found

    A two-parameter criterion for classifying the explodability of massive stars by the neutrino-driven mechanism

    Full text link
    Thus far, judging the fate of a massive star (either a neutron star (NS) or a black hole) solely by its structure prior to core collapse has been ambiguous. Our work and previous attempts find a non-monotonic variation of successful and failed supernovae with zero-age main-sequence mass, for which no single structural parameter can serve as a good predictive measure. However, we identify two parameters computed from the pre-collapse structure of the progenitor, which in combination allow for a clear separation of exploding and non-exploding cases with only few exceptions (~1-2.5%) in our set of 621 investigated stellar models. One parameter is M4, defining the normalized enclosed mass for a dimensionless entropy per nucleon of s=4, and the other is mu4 = d(m/M_sun)/d(r/1000 km) at s=4, being the normalized mass-derivative at this location. The two parameters mu4 and M4*mu4 can be directly linked to the mass-infall rate, Mdot, of the collapsing star and the electron-type neutrino luminosity of the accreting proto-NS, L_nue ~ M_ns*Mdot, which play a crucial role in the "critical luminosity" concept for the theoretical description of neutrino-driven explosions as runaway phenomenon of the stalled accretion shock. All models were evolved employing the approach of Ugliano et al. for simulating neutrino-driven explosions in spherical symmetry. The neutrino emission of the accretion layer is approximated by a gray transport solver, while the uncertain neutrino emission of the 1.1 M_sun proto-NS core is parametrized by an analytic model. The free parameters connected to the core-boundary prescription are calibrated to reproduce the observables of Supernova 1987A for five different progenitor models.Comment: 23 pages, 12 figures; accepted by ApJ; revised version considerably enlarged (Fig. 7 and Sect.3.6 added

    Emission line models for the lowest-mass core collapse supernovae. I: Case study of a 9 M⊙M_\odot one-dimensional neutrino-driven explosion

    Full text link
    A large fraction of core-collapse supernovae (CCSNe), 30-50%, are expected to originate from the low-mass end of progenitors with MZAMS =8−12 M⊙M_{\rm ZAMS}~= 8-12~M_\odot. However, degeneracy effects make stellar evolution modelling of such stars challenging, and few predictions for their supernova light curves and spectra have been presented. Here we calculate synthetic nebular spectra of a 9 M⊙M_\odot Fe CCSN model exploded with the neutrino mechanism. The model predicts emission lines with FWHM∌\sim1000 km/s, including signatures from each deep layer in the metal core. We compare this model to observations of the three subluminous IIP SNe with published nebular spectra; SN 1997D, SN 2005cs, and SN 2008bk. The prediction of both line profiles and luminosities are in good agreement with SN 1997D and SN 2008bk. The close fit of a model with no tuning parameters provides strong evidence for an association of these objects with low-mass Fe CCSNe. For SN 2005cs, the interpretation is less clear, as the observational coverage ended before key diagnostic lines from the core had emerged. We perform a parameterised study of the amount of explosively made stable nickel, and find that none of these three SNe show the high 58^{58}Ni/56^{56}Ni ratio predicted by current models of electron capture SNe (ECSNe) and ECSN-like explosions. Combined with clear detection of lines from O and He shell material, these SNe rather originate from Fe core progenitors. We argue that the outcome of self-consistent explosion simulations of low-mass stars, which gives fits to many key observables, strongly suggests that the class of subluminous Type IIP SNe is the observational counterpart of the lowest mass CCSNe.Comment: Resubmitted to MNRAS after referee comment

    DNA immunization using a non-viral promoter

    Get PDF
    AbstractMost DNA vaccines rely on strong viral promoters to optimize levels of transgene expression. Some studies have demonstrated that the potency of viral promoters does not necessarily correlate with DNA vaccine efficacy in vivo. This has partly been attributed to downregulation of these promoters by cytokines such as interferon Îł induced by the CpG motives of these vaccines. In an attempt to avoid downregulation of viral promoters by IFN-Îł, we tested vaccine vectors driven by the MHC class II promoter. To enhance the activity of this promoter, another plasmid expressing the human MHC class II transactivator driven by a viral promoter, the native IFN-Îł inducible CIITA type IV promoter (PIV) or a synthetic promoter containing IFN-Îł inducible elements was co-inoculated. Our data show that a non-viral promoter such as the MHC class II promoter tested in this study can indeed be used in DNA vaccines

    General Two-Dimensional Supergravity from Poisson Superalgebras

    Get PDF
    We provide the geometric actions for most general N=1 supergravity in two spacetime dimensions. Our construction implies an extension to arbitrary N. This provides a supersymmetrization of any generalized dilaton gravity theory or of any theory with an action being an (essentially) arbitrary function of curvature and torsion. Technically we proceed as follows: The bosonic part of any of these theories may be characterized by a generically nonlinear Poisson bracket on a three-dimensional target space. In analogy to a given ordinary Lie algebra, we derive all possible N=1 extensions of any of the given Poisson (or W-) algebras. Using the concept of graded Poisson Sigma Models, any extension of the algebra yields a possible supergravity extension of the original theory, local Lorentz and super-diffeomorphism invariance follow by construction. Our procedure automatically restricts the fermionic extension to the minimal one; thus local supersymmetry is realized on-shell. By avoiding a superfield approach we are also able to circumvent in this way the introduction of constraints and their solution. For many well-known dilaton theories different supergravity extensions are derived. In generic cases their field equations are solved explicitly.Comment: 70 pages, LaTeX, AMSmath, BibTe

    Sewer inspection and comparison of acoustic and CCTV methods

    Get PDF
    In the UK, the majority of sewer pipe inspections are carried out using closed-circuit television (CCTV) technology. This inspection technology is expensive; given the size of the UK sewer network, this means that only a small sample of network is inspected regularly. Up-to-date condition information on individual sewers is required to minimise sewer network operation failures and, ultimately, to eliminate flooding. There is therefore a need for a quicker and cheaper inspection method. This paper reports on a novel low-cost acoustic sensor system that can be used for the rapid detection of various defects in sewer pipes. It is shown that a large number of pipe defects can be classified and validated against CCTV images by way of visual examination of the acoustical data presented in the form of spectrograms. An overview of the technological principles used by the acoustic inspection method is presented in this paper together with the results of field trial surveys. The new method was tested in operational sewers in Austria and the acoustic inspection results compared with available CCTV reports: 79% of the defects identified by CCTV were also detected using the acoustic technique

    Aluminum arsenide cleaved-edge overgrown quantum wires

    Full text link
    We report conductance measurements in quantum wires made of aluminum arsenide, a heavy-mass, multi-valley one-dimensional (1D) system. Zero-bias conductance steps are observed as the electron density in the wire is lowered, with additional steps observable upon applying a finite dc bias. We attribute these steps to depopulation of successive 1D subbands. The quantum conductance is substantially reduced with respect to the anticipated value for a spin- and valley-degenerate 1D system. This reduction is consistent with disorder-induced, intra-wire backscattering which suppresses the transmission of 1D modes. Calculations are presented to demonstrate the role of strain in the 1D states of this cleaved-edge structure.Comment: Submitted to Applied Physics Letter

    Adsorbate-adsorbate interactions from statistical analysis of STM images: N/Ru(0001)

    Get PDF
    Atomic nitrogen on Ru(0001) was prepared by dissociative chemisorption of N2 and studied by scanning tunneling microscopy (STM) at 300 K. Nitrogen occupies the hcp threefold hollow site and is imaged as a depression with a diameter of about 5 Å. Interactions between the adsorbed nitrogen atoms were obtained by statistical analysis of STM images, by extraction of the two-dimensional pair distribution function from the arrangement of the N atoms. Since the nearest-neighbor separations could be identified with atomic precision, the pair distribution function g and hence the potential of mean force Veff were obtained as a function of the discrete neighbor sites j up to the tenth nearest neighbor. A comparison with Monte Carlo calculations for balls with a hard-sphere potential provides information about the pair potential Vpair(j): The nearest-neighbor site is strongly repulsive, the second-neighbor site is weakly repulsive, and the third-neighbor site is weakly attractive. These findings rationalize the absence of island formation and of a well-ordered 2×2 phase for the N/Ru(0001) system: At temperatures ≄300 K the attractive interaction on the third-neighbor site is too weak, while at lower temperatures the diffusion barrier of 0.9 eV represents a kinetic obstacle. The fact that the range of the interaction is identical to the diameter of the N-atom features in the STM topographs is taken as evidence that the interaction is caused by substrate-mediated electronic forces

    Type Ic supernova of a 22 M⊙ progenitor

    Get PDF
    © 2020 The Author(s). Type Ic supernovae (SNe Ic) are a sub-class of core-collapse SNe that exhibit no helium or hydrogen lines in their spectra. Their progenitors are thought to be bare carbon-oxygen cores formed during the evolution of massive stars that are stripped of their hydrogen and helium envelopes sometime before collapse. SNe Ic present a range of luminosities and spectral properties, from luminous GRB-SNe with broad-lined spectra to less luminous events with narrow-line spectra. Modelling SNe Ic reveals a wide range of both kinetic energies, ejecta masses, and 56Ni masses. To explore this diversity and how it comes about, light curves and spectra are computed from the ejecta following the explosion of an initially 22 M⊙ progenitor that was artificially stripped of its hydrogen and helium shells, producing a bare CO core of ∌5 M⊙, resulting in an ejected mass of ∌4 M⊙, which is an average value for SNe Ic. Four different explosion energies are used that cover a range of observed SNe. Finally, 56Ni and other elements are artificially mixed in the ejecta using two approximations to determine how element distribution affects light curves and spectra. The combination of different explosion energy and degree of mixing produces spectra that roughly replicate the distribution of nearpeak spectroscopic features of SNe Ic. High explosion energies combined with extensive mixing can produce red, broad-lined spectra, while minimal mixing and a lower explosion energy produce bluer, narrow-lined spectra

    Kinetic oscillations in the NO + CO reaction on Pt(100): Experiments and mathematical modeling

    Get PDF
    The reaction of NO and CO on Pt(100) exhibits two branches of steady state production of N2 and CO2 and the occurrence of kinetic oscillations. This system was studied under steady flow conditions in the 10−6mbar total pressure range using low‐energy electron diffraction‐(LEED), work function measurement, and mass spectrometry for determination of the reaction rate. These studies revealed that kinetic oscillations can only be initiated from one of the two stable reaction branches. Two separate existence regions were detected in which the oscillations are always damped. Oscillations can be very reproducibly excited by slight decreases in temperature. The 1×1 hex phase transition of the surface structure was observed to take place only in one of the two regions of reaction rate oscillations. Its influence seems to be of minor relevance to the mechanism of oscillations as oscillations in one region occur on the surface that maintains a 1×1 structure. The experiments were modeled by a set of coupled differential equations based on knowledge about the elementary reaction steps. The model calculations reproduced the steady states of the reaction as well as the occurrence of kinetic oscillations in different ranges in excellent agreement with experimental observation. In the model, the phase transition also has no relevance for the oscillation mechanism. The occurrence of oscillations can be rationalized in terms of a periodic sequence of autocatalytic ‘‘surface explosions’’ and the restoration of an adsorbate‐covered surface. The damping, experimentally observed, is attributed to insufficient spatial coupling between different regions of the surface
    • 

    corecore